

Corrosion and Its Control, Polyethylene Encasement (V-Bio®)

DIPRA Member Companies

- AMERICAN Ductile Iron Pipe Birmingham, AL
- Canada Pipe Company, LTD. Hamilton, Ontario
- McWane Ductile Coshocton, OH

Ę

- United States Pipe and Foundry Company Birmingham, AL

Regional Engineer Program

Ę

DIPRA Website

• www.dipra.org

Desktop

Mobile

DIPRA Website

(www.dipra.org)

DIPRA Technical Publications

tile Iron Pipe earch Association

DIPRA Publications

Ē

Versailles, France (Installed 1664)

Century Club

 The Cast Iron Pipe Century Club recognizes water utilities with Cast Iron mains that have provided service for 100 years or more. 530 in US.

Neihart, Montana – 12-Inch Cast Iron Pipe Installed: 1892 – Inspected: 1992 Member: Cast Iron Pipe Century Club

n Pipe Association

Resistivity: 2,520 ohm-cm

Princeton, Kentucky – 16-Inch Ductile Iron Pipe Installed: 1963-1964 – Inspected: 1998 (2003) (2013)

Pipe ssociation

Resistivity: 3,600 – 7,600 ohm-cm

Century Club (California)

Location	Utility	Year Inducted	Oldest Pipe
Benicia	City of Benicia	1991	1887
Imperial Beach	California-American Water Company, Coronado District	1991	1888
Los Angeles	L. A. Department of Water & Power	1985	1885
Merced	The City of Merced	1989	1889
Monrovia	City of Monrovia	2008	1908
Monterey	California-American Water Company	1988	1885
Oakland	East Bay Municipal Utility District	1982	1876
Pasadena	Pasadena Water & Power Department, Water Division	1987	1887
Sacramento	Sacramento Water Department	1954	1854
San Bernardino	City of San Bernardino Municipal Water Department	2017	1909
San Francisco	San Francisco Water Department	1958	1859
San Jose	San Jose Water Works	1981	1878
San Luis Obispo	City of San Luis Obispo	2007	1888
Santa Barbara	The City of Santa Barbara	1991	1886
Santa Cruz	City of Santa Cruz Water Department	1997	1890
Santa Rosa	Santa Rosa Utilities Department	1994	1893
Sonora	Pacific Gas & Electric Company, Water Systems Department	1965	1852
Stanford	Stanford University	1989	1888

Sesquicentennial Club

 The Cast Iron Pipe Sesquicentennial Club recognizes water utilities with Cast Iron mains that have provided continuous service for 150 years or more. 21 In US.

Sesquicentennial Club

Huntsville, AL Mobile, AL Washington DC Louisville, KY Boston, MA Detroit, MI St. Louis, MO Albany, NY Buffalo, NY

Ę

Troy, NY Utica, NY Cincinnati, OH Allentown, PA Columbia, PA Lancaster, PA Philadelphia, PA Pittsburgh, PA

York, PA Nashville, TN Lynchburg, VA Richmond, VA Winchester, VA Halifax, NS Montreal, QC Quebec City, QC

Sesquicentennial Club

Ļ

Louisville, KY - October 2010

External Soil Corrosion

Ę

Galvanic Corrosion Cell

Ē

The underground pipe corrosion cell . . .

Ductile Iron Pipelines are Electrically Discontinuous

Push-on Joint

Mechanical Joint

Sources of Stray Current

- Impressed current cathodic protection systems
- Electric transit systems
- Arc-welding equipment
- Direct current transmission systems
- Grounding electrical systems to pipe

Impressed Current Cathodic Protection

Ę

AC Overhead Power Line Right-of-Ways

Effect of Overhead AC Power Lines

10-Point System

Soil Evaluation Parameters

Ę

- Resistivity
- Redox
- pH
- Sulfides
- Moisture

10-Point Soil Evaluation

Posist	ivity, ohm cm (based on water saturat	od coil box):		
Kesist	< 1 500	.eu son boxj. 10		
		0		
	\geq 1,500 - 1,800	0 E		
	> 1,000 - 2,100	2		
	> 2,100 - 2,300	Z 1		
	> 2,500- 3,000	1		
	> 3,000	0		
pH:		_		
	0-2	5		
	2 - 4	3		
	4 - 6.5	0	*3 points should be added if	
	6.5 - 7.5	0*	low or negative redox and	
	7.5 - 8.5	0	sulfides are present	
	> 8.5	3		
Redox	cpotential:			
	> +100 mV	0		
	+50 to +100 mV	3.5		
	0 to +50 mV	4		
	Negative	5		
Sulfid	es:			
	Positive	3.5		
	Trace	2		
	Negative	0		
Moist	ure:			
	Poor drainage, continuously wet	2		
	Fair drainage, generally moist	- 1		
	Good drainage, generally dry	0		

Corrosive Environments

- Coal
- Cinders
- Swamps
- Expansive Clays
- Peat Bogs
- Mine Wastes
- Landfill Areas
- Alkali Soils

DIPRA Corrosion Research

- 1928 Strength of Corrosion Products
- 1940 Coatings
- 1949 Bolt Corrosion
- 1952 Coatings and Loose Polyethylene
- 1963 Field Investigations (on-going)
- 1971 Stray Current
- 1989 Copper Service
- 1999 Elevated Temperature
- 2000 Effect of Chloramines on Gasket Materials
- 2002 Rate of Corrosion

DIPRA Test Sites

DIPRA Test Sites

Ē

DIPRA Test Site Data

LOCATION	<u>RESISTIVITY</u>	<u>рН</u>	SULFIDES	<u>REDOX</u>
Atlantic City, NJ	66	7.0	positive	-240
Birmingham, AL	400	7.0		
Casper, WY	350	8.0	negative	+96
Everglades City, FL	150	7.2	positive	-150
Herrin, IL	4,440	4.7	negative	+205
Lombard, IL	2,500	7.3	trace	+90
Overton, NV	188	7.9	negative	+200
Raceland, LA	1,000	7.2	trace	+140
Spanish Fork, UT	720	7.5	negative	+140
Watsonville, CA	1,040	6.2	trace	+180
Wisconsin Rapids, WI	6,000	3.5	positive	+210

DIPRA Research

Ę

DIPRA – Bolt Study

Ę

Everglades Test Site

CIPRA - 1952 Polyethylene Protection Study

Ę

Everglades City, FL - 6" Gray Cast iron 18 years exposure

4-mil polyethylene encased

Resistivity: 400 ohm-cm Redox: - 35 mV pH: 7.1 Sulfides: Positive Soil Moisture: Saturated

A Solution – Both Economical and Effective

Ē

ANSI/AWWA C105/A21.5

Ę

Polyethylene Encasement

Polyethylene Encasement History of Development

Modified Method A

Polyethylene Encasement (Wet Trench) Installation

Encasement of Appurtenances

Polyethylene Encasement

(V-Bio[®] Enhanced with Additional Colored Layer)

Ę

Ē

Ļ

Ļ

Saddle Taps

Polyethylene Encasement Investigations

Resistivity: 480 ohm-cm pH: 6.8 Redox: - 30 mV Sulfides: Positive Chlorides: Positive Saturated

1 ---- a

tile Iron Pipe earch Association

Resistivity: 480 ohm-cm pH: 6.8 Redox: - 30 mV Sulfides: Positive Chlorides: Positive Saturated

ile Iron Pipe arch Association

Resistivity: 480 ohm-cm pH: 6.8 Redox: - 30 mV Sulfides: Positive Chlorides: Positive Saturated

'ipe ociation

Resistivity: 480 ohm-cm pH: 6.8 Redox: - 30 mV Sulfides: Positive Chlorides: Positive Saturated

Lafourche Parish, Louisiana

(Clear, Low Density (8-mil) Polyethylene)

Lafourche Parish, Louisiana

(Clear, Low Density (8-mil) Polyethylene)

Lafourche Parish, Louisiana

(Clear, Low Density (8-mil) Polyethylene)

Lafourche Parish, Louisiana

F

(Clear, Low Density (8-mil) Polyethylene)

Lafourche Parish, Louisiana

(Clear, Low Density (8-mil) Polyethylene)

Parameter	Tested	Min.*	
Tensile Strength at Break (psi)	2,104	1,200	
Elongation at Break (%)	518	300	

* Minimum values as set forth in AWWA C105-72

Tested Values from 2013 Inspection

Ę

Polyethylene Encasement Investigations

Polyethylene Film Comparison

	Linear Low-Density	<u>HDCL</u>
Minimum Thickness (mil)	8	4
Dielectric Strength (V/mil)	800	800
Tensile Strength (psi)	3,600	6,300
Elongation (%)	800	100
Impact Resistance (g)	600	800
Tear Resistance (gf)	2,550	250

Corrosion Probes

Florida Everglades Corrosion Testing (above ground monitoring)

Corrosion Probes under Polyethylene Encasement

V-Bio® Polyethylene Encasement

RECOMMENDED ADDITIONAL RESEARCH

(Polyethylene Encasement with an Anti-microbial & Corrosion Inhibitor in film - V-BIO™)

V-Bio® Polyethylene Encasement

Corrosion Probes under V-Bio[™] Polyethylene Encasement

Design Decision Model (DDM[®])

The Design Decision Model® (DDM[®])

Likelihood Factors

- Resistivity
- Redox
- pH
- Sulfides
- Moisture Content
- Known corrosive environs
- Chlorides
- Bi-metallic connections
- Ground water influence

Consequence Factors

- Pipe Size
- Pipe Location
- Depth of Cover
- Alternative Water Supply?

The Design Decision Model® (DDM[®])

Design Decision Model[®]

	Recommendations
1	As manufactured with shop coat
2	V-Bio® Enhanced Polyethylene Encasement
3	V-Bio® Enhanced Polyethylene Encasement, or V-Bio® Enhanced Polyethylene Encasement with Joint Bonds
4 *	V-Bio® Enhanced Polyethylene Encasement with Metallized Zinc Coating, or V-Bio® Enhanced Polyethylene Encasement with Life Extension Cathodic Protection
5 *	V-Bio® Enhanced Polyethylene Encasement with Metallized Zinc Coating, or V-Bio® Enhanced Polyethylene Encasement with Cathodic Protection

* Recommendations in Zones 4 and 5 recognize a practical difference between distribution and transmission mains. Distribution mains are generally smaller sized pipes, with the final classification to be defined by the pipeline owner. Cathodic protection should be considered where external corrosion is a significant risk or where pipe repairs/replacements would be cost prohibitive.

Damaged Polyethylene

Damaged Bonded Coatings

(Conventional DIP)

- 3 test sites (Everglades, Nevada & Hughes)
- 6 year results
 - Accelerated pitting on bonded coatings
 - Not accelerated for polyethylene encasement

Everglades Test Site

Ę

(Zinc-coated Pipe with Damage & Damaged V-Bio®)

Sacrificial Anode Cathodic Protection

Ē

F

Figure 3. Typical cumulative leak frequency vs. time curve. The exponential leak rate is typical of corrosion processes.

Using auger to drill anode holes

Attaching anode wire to pipe using electrical resistance welding

Ę

Ę

Figure 7. Cumulative number of breaks before and after anodes installed, Durham, Canada. Corrosion protection installed 1984 for a total of 1.1 miles of pipe

Strength and Durability for Life[®]

Questions?

Thank you!

Jeffrey J. Butters Regional Engineer

Ductile Iron Pipe Research Association PO Box 3824 Lake Arrowhead, CA 92352 909.733.7341 jbutters@dipra.org www.dipra.org

